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Chapter 1
Motivation and Methods

Acousto-Ultrasonics (AU) combines acoustic-emission (AE) reception

techniques and normal incidence ultrasonic surface loading to determine the

distributed damage state in a composite materials (as opposed to macro-defects

such as large delaminations or cracks). Although researchers have been able to

show that the AU technique can describe the decline in material properties

associated with increased porosity or reduced inter-laminar shear strength, the

scientific community has not universally welcomed AU because a strong

theoretical basis does not yet exist for the method. This technical report addresses

this lack. It models the Acousto-Ultrasonic stress waves as Lamb Wave modes so

that the effect of the size of the transducer can be studied. This work provides a

better physical understanding of the wave propagation principles involved in AU,

so that the technique can be used most effectively.

Need

When AU was first used, most analyses relied on empirical results that

neglected frequency and guided wave effects. The results were not extremely

conclusive because the mechanics of the chosen features were not well

understood. Stress Wave Factors (SWF's) were developed to try to quantify the

material attenuation, assuming that the internal damage increases the attenuation.

Many different time-domain SWF's have been used, for example the counts

above threshold (Vary, 1978), average time to arrival (Kautz, 1990), the

integrated time-domain signal after passing the signal through a filter (Kautz,



1985),thesignalamplitude(Das,1993),or the integratedsquareof thetime-

domainsignal(Das,1993).

Currently,mostresearchersbasetheirSWF's on thefrequency(or power)

domainof thesignal. Someof thecommonSWF's in this classarethe areaunder

thepower spectrum(Reis,1993),thefirst momentof thepowerspectrum,the

centerfrequency(HomeandDuke,1993),patternrecognitionroutines(Thomsen

andLund, 1990,Barton, 1993,Hinton, 1993)or theareaunderthepower

spectrumwithin certainfrequencybounds(Kautz, 1990). By basingtheir SWF's

in thefrequency-domain,theseresearchersareableto approximatetheamountof

energycontainedin thesignal,just aswasdonein thetime-domain. In addition,

thebehaviorof thedifferentfrequencycomponentscanbecompared.

To gainmore insightinto thedifferencesbetweenthefrequency

componentsandcreatewavestructuresthataremoresensitiveandaccurate,many

researchersaretreatingthestresswavesasLamb Waves(Tang, 1988,Alleyne

1991,1992,Ditri 1993b,1992,Rose1993,CostleyandBerthelot, 1993).

Generatingspecificmodesprovidesa muchstrongertheoreticalbasis.However,

thephysicalunderstandingof AU's uniquewavepropagationcharacteristicsis

still far from complete. In additionto the inhomogeneousnatureof composite

materials,normally incidenttransducersarealimiting wavepropagationcasethat

hasnot yet beenfully explored.

Little work hasbeendoneon thegenerationof wavesby finite-sized

transducers.Viktorov (1967),Pursey(1957),FultonandSneddon(1958),and

Nikiforov andKharitonov(1981)beganwork in this area. Most recentlyDitri et

al. (1993)andRoseet al. (1993a)havecontinuedthis work. However,mostof

thework to datehasconcentratedon the "wedge"technique,which canallows the

angleof incidenceto beadjustedsothephaseof thedesiredmodecanbe

matched.Very little work hasbeendonethatstudiesthefinite sourceinfluence
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on the generationof Lambwavesat normalincidence. Roseet al. (1993a)

qualitativelyshowedafrequencyshift thatis associatedwith changingthe

transducer'ssizein compositelayers. Ditri et al. (1993)derivedthetime-

harmonicsolutionsdueto axisymmetricnormalsurfaceloading(whichmodels

AU).

Although thecurrentlyusedSWF'swork well for determiningporosityor

microstructurecracking,theycanonly comparesamplesto aknownset,andthey

cannotseparatetheeffectsof differenttypesof defectsor theeffectsassociated

with theexperimentalsetupsuchasthecouplant,thecontactpressure,or

transducerparameters.This incompletephysicalunderstandingrestrictsthe

researchers'ability to applyresultsfrom onespecimenandonetransducerto

another. Studyingtheinfluenceof thesourcecansignificantly narrowthegap

betweenexperimentandtheory. It will alsohelpdeterminewhich modesand

frequenciescanbeusedmosteffectively to detectcertaintypesof damage.

Goals and Elements of This Report

The goal of this thesis is to gain a better physical understanding of the

wave propagation principles used in Acousto-Ultrasonic non-destructive

evaluation. By enhancing the physical basis and understanding of AU, inherent

limitations can be recognized and adjustments can be made to compensate for

these limitations or even take advantage of them. This will help researchers

develop sophisticated defect analysis methodologies and allow AU to become a

very powerful method of NDE.

This work builds upon recent investigations of frequency effects and the

time-harmonic wave solutions by closely examining the influence that the source

and the plate thickness have on transient loadings of an isotropic layer. It



concentrateson thegenerationof guidedwaves via transient normal axisymmetric

surface loading.

A FORTRAN program was created that generalizes the time-harmonic

solutions to simulate realistic transient solutions. Using this program and

experimental results, the following questions were addressed:

• How does the size of the transducer affects mode generation

• How does a finite source modify the frequency-thickness normalization

• How does the pressure distribution and shape of the wavepacket affect mode

generation

Physical interpretations and practical guidelines for the generation of guided

waves using Acousto-Ultrasonics are given for each of these areas.

Methodology

In order to find the wave propagation principles that control the effect of

the transducers size, three methods are used. These methods include discussion of

the time harmonic solutions proposed by Ditri et al., computer modeling via linear

superposition of the time harmonic solutions, experimental data, and a general

discussion of the physical concepts involved.

Time Harmonic Solutions

Ditri et al. propose the guided isotropic plate wave solutions due to

loading by an axisymmetric normal surface load, which models the AU technique.

Although the solutions are derived for an isotropic plate, which allows the stress

waves to be considered as Lamb Waves, the general principles derived from them

will also apply to anisotropic plates (and composite plates) as long as only one

direction is considered. Previous work has shown that this a valid conclusion

because composite structures can support waves that behave in the same manner
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asLamb wavespropagatingin isotropicmaterials(TangandHenneke,1988,

Kautz, 1993).

Thetime-harmonicsolutionsthat arederivedtakeinto accountthesizeof

thetransducer(aswell asthepressuredistribution)for the limiting caseof

normally incidentwaves.Themathematicsof thesolutionhelpsbuild an

understandingof theunderlyingphysicalprinciples.

The restof this sectionsummarizesthederivationof thetime-harmonic

solutionsthatweredevelopedby Ditri (1993a)andthatform thebasisfor this

study. A completederivationof thesolutioncanbe foundin AppendixA.

Theproblemof normalincidencepressureloadingof a linearly elastic,

homogeneous,isotropiclayeris investigatedfor thecoordinateaxesthat are

shownin figure 1.1. Fromthetheoryof elasticity,it canbedeterminedthat the

displacementfield, u(r,t), will satisfyNavier's equationof motion,

o32u

pV2u + (/q, + 2t.t )VV. u = p--_-t2 (1.1)

for all r interior to the layer (where p is the mass density of the material and ;t, and

/1 are its Lam6 constants).

The AU technique uses normal incidence longitudinal wave transducers,

which tend to apply only normal tractions to the surface of the plate because shear

stresses cannot be effectively transmitted across the oil film that couples the

transducer to the plate. To model this situation, the following boundary

conditions are used,

cr=(r,z=dl2,t)={f(r_ e-_'

crzz(r,z = -d / 2,t) =--O

cr_z(r,z=dl2,t)={g(r_ e-i_

cr_(r,z = -d l 2,t)-O

5

O<r<a

r>a

O<r<a

r>a

(1.2a-d)



wheref(r) andg(r) are the normal and transverse traction distributions applied to

the surface of the plate. As indicated by equations (1.2), the surface loading is

assumed to be time-harmonic and axisymmetric, applied over a circular region of

radius a.

z

Y r

_r)e i_ a

dj__( x (
1

Figure 1.1 The upper surface of a layer is subjected to a time-harmonic axisymmetric normal

traction loading in the circular region r - _ + y2 < a

The displacement field is uncoupled into irrotational and equivoluminal

parts using the Helmholtz decomposition. The Hankel transform is then applied

and the boundary conditions are satisfied. After solving for the unknown

amplitudes in the general solution, the inverse Hankel transform is applied, using

residue calculus to evaluate the resulting integrals. This procedure yields the
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following resultsfor thesymmetrical(s) andanti-symmetrical(a) componentsof

the in-plane(r) andout-of-plane(z) particledisplacements,u_?_:

u_'*(r,z)=i _---_-_F°(_,.o,a)_,.o H_l)(_,.or) r>a (1.3a)
21_ _.,., a'.,.(_s.°)

_ ,z)=t F°(_s'°'a)_"° A_.o(_,.o)

where the solution is summed over _s,a, the wavenumber roots of the symmetric

and anti-symmetric dispersion equations, As, a. A_,° represents the derivative with

respect to wavenumber of these dispersion equations. F ° is the zero order Hankel

transform of the normal pressure distribution, fir), and H_ _) is the Hankel function

of the first kind of order n. The F_, ° terms are defined in Appendix B. A

description of the significance of each of these terms is given below.

The summation sign in the problem solution indicates that every

propagating mode contributes to the solution. For a given circular frequency, co,

the function is evaluated at all of the roots of the symmetric and anti-symmetric

Rayleigh-Lamb dispersion equations, which correspond to the wavenumbers at

which each mode propagates. This result follows directly from the residue

calculus used to solve the problem. The denominator of the solution (before the

residue calculus is used to evaluate the integral) is either the symmetric or anti-

symmetric dispersion equation, for u_._ and ur_ respectively. So the poles of the

solution coincide with the roots of dispersion equation. Later, the solution will be

generalized so that a range of frequencies (as opposed to a single frequency) is

excited. In this case, the summation over the modes becomes integration over the

dispersion curves.

The source term, po is the Hankel transform of the normal pressure

distributionf(r), defined in the boundary conditions. This term accounts for the

interference effects across the face of a finite source. For a point source (which

7



doesnotexperiencethis typeof interference)theHankel transformhasaconstant

valuewith respectto thetransformvariable,_,which is alsothewavenumber.

Exciting everywavenumberequallymeansthatevery frequencyandphase

velocity arealsoexcitedequallysince _ = 7vph for a planar wavefront. For a

finite source, the value of the Hankel transform of the pressure distribution will

fluctuate at high wavenumbers (low phase velocities), and approach a maximum

value (-0.5Pa 2 for the piston case) as the wavenumber goes to zero (and the phase

velocity goes to infinity). Ditri (1993a) showed that the solution may be

generalized to include the Hankel transform of any axisymmetric time-harmonic

pressure distribution.

The material response term, F,,a/A$.,, is a function of the material

properties (bulk longitudinal and shear wave velocities), the wavenumber and the

frequency-thickness product. It represents what wavestructures the plate can

support and still satisfy the zero traction boundary conditions. If the material

response term includes the wavenumber term that appears immediately before it,

it represents the system's response to a point source, which decays to zero as the

phase velocity approaches infinity. However, this wavenumber term has been

pulled out so that the material response is dependent on the frequency-thickness

product instead of being dependent on the frequency and thickness independently.

By separating the wavenumber in this manner, the finite-size effects are separated

and the material response better indicates the modes' behavior at infinite phase

velocities (tending to be infinitely excitable or unexcitable). Expressions for

gamma and delta can be found in Appendix B.

The wavenumber that has been pulled out from the material response term

is first introduced to the solution by the Hankel transform to account for its

cylindrical nature. Although the Hankel transform operates on only one variable,

r, it is actually a two dimensional transform. The implied integration over the

8



angle,(9,leadsto a constant value times r since the function is assumed to be

axially symmetric, not varying with 8. Physically, this phenomenon can be

related to the dissipation of energy as a wave packet moves away from the source

and spreads over a greater region. At times in this thesis, the wavenumber term is

included in the source term because the energy considerations can be related to

the finite nature of the source. Including the wavenumber as a part of the source

term concentrates all of these f'mite-size source effects in the source term and

allows the material response to be independent of the frequency (and dependent

on the frequency-thickness product instead). However, the material response term

may also be multiplied by the wavenumber term, so that the material response

term reflects the response of the system to a point source.

The radial term, H_o')(_,.,r) or H_l)(_,,or), describes how the wave

behaves as the distance from the source increases. The distance between

consecutive local maxima (the radial "wavelength") decreases as the separation

from the source increases, which will affect the group velocity and interference

effects. In the large radius limit, however, the Hankel function behaves more

traditionally, fluctuating with a near constant wavelength.

x>>l

In this hmit, the expression relating the wavenumber to the frequency and phase

velocity approaches what it would be for a planar wavefront ( _ = ro/vph ).

(1.4)

Computer Model

The solution technique explained above assumes a time-harmonic source

(continuous wave). However, before it can be applied to realistic circumstances,

the solution needs to be expanded to include transient sources. In order to do this,



thesolutionneedsto accountfor theexcitationof wavesovera portionof the

frequencyspectrum,asopposedto excitationat onespecificfrequency.

Thevariouscomponentsof thefrequencyspectrumarecombinedby

simple linearsuperposition.In practice,thecomplexFouriertransformof the

sourceis usedasaweightingfunction (replacingtheconstantpressureamplitude

function P with p(r.o)). The complex transform is used so that the phasing

information of each of the frequency components can be conserved. Because the

governing equation is a hyperbolic differential equation, causality is "built in" and

does not need to be explicitly added. The superposition of sources suffices.

From the frequency spectrum, the time domain signal can be generated by

two techniques. The first method, the harmonic summation method, multiplies

each term by e "i_t, integrates over the dispersion curves in the region of interest,

and then repeats the process after incrementing the time. The solution may also

be obtained by taking the inverse Fourier transform of the complex frequency

response of the system. The inverse FFT technique is much faster and yields

identical results. However, the harmonic summation method must still be used to

obtain a cross sectional profile (through the plate thickness), since, by definition,

the inverse Fourier transform transforms a frequency spectrum to the time

domain. The inverse transforms are unique as long as the functions are

continuous, as they are in this case.

A FORTRAN program was created to implement this transient solution.

The program was created to run under VS FORTRAN in Penn State's VM

environment. Its code is approximately 1500 lines long, and it takes anywhere

from five seconds to twenty five minutes to run, depending on the task and the

present load on the system. The data files were downloaded to a Quadra 900 and

graphed using Microsoft Excel. The computerized solution allows each of the

factors which affect the wave propagation to be studied separately. It also takes

10



into account the changes in phase velocity and excitability that occur because a

portion of the frequency spectrum, and not a single frequency, is excited.

Experimental Testing

Experimental results are used to confirm the analytical ones. For

comparison, three different size Gamma transducer pairs (6.35 mm, 12.7 mm, and

25.4 mm) from Krautkramer-Branson and a tone burst generator setup (HP3441A

and HP8166 Function Generators, MATEC 350 Amplifier, and a LECROY 9310

digital oscilloscope) are used.

The experimental setup can be seen in figure 1.2. A Hewlett Packard 3314

function generator created a continuous wave at the desired center frequency.

This signal lead to a Hewlett Packard 8116A function generator which modulated

the signal so that each burst contained 20 cycles. This modulated tone-burst

technique allows the center frequency of the pulse to be controlled regardless of

the frequency characteristics of the individual transducers. A MATEC model 350

tone burst amplifier was coupled to an attenuator to increase the signal voltage to

20 volts. The amplification was linear for all signals whose center frequency was

between one and ten megahertz for a pulse repetition setting of 10 ms, as

witnessed by propagating the wave through a PMMA delay block. The matched

transmitting and receiving transducers were coupled to the aluminum plates using

Krantkramer Branson Ultrasonic Couplant. Surface tension between the

transducer and the couplant was used to hold the transducers on the plate, so that

shear tractions would not be induced on the plate. The signal was analyzed by a

LECROY 9310 digital oscilloscope with a 2 ns accuracy. Two thousand points

were sampled at 50 ns intervals (100 _ts total) and transferred to a NCR computer

that was running Lab Windows, where standard IMSL routines were used to find

the frequency spectrum of the signal. All of the graphing was done using

Microsoft Excel on a Macintosh Quadra 900.

II



Thesetestmethodsareusedto evaluatetheeffect thatthetransducer'ssize

hasonAU wavepropagationwhich is describedin therestof this report.
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Figure 1.2 The experimental configuaration used to create tone burst signals. This set-up allows
the center frequency of the source to be controlled so optimum frequencies can be chosen.
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Chapter 2

General Considerations in Acousto-Ultrasonic

Wave Propagation

This chapter addresses some general principles that will be used in the rest

of this thesis. It begins by explaining the concept of excitabilities and how they

are related to the wavestructure. The pressure distribution across the face of the

transducer and the effect of the pulse shape are also discussed.

Excitabilities and Cross Sectional Profiles

In plates, waves can only propagate at certain frequency-phase velocity

combinations that correspond to the roots of the Rayleigh-Lamb dispersion

equations. Where these roots would fall for an aluminum plate is shown in figure

2.1. Each of these roots has a certain excitability associated with it that represents

how easily that mode can be generated. This excitability is related to the

wavestructure of that root (point on the dispersion curve) and is generally defined

as the ratio of the normal component of the particle velocity on the surface of the

plate to the total power carried by the mode. The out-of-plane and in-plane

particle velocity components change for each of the points on the dispersion

curve, causing certain points to be more excitable than others.

Near the Cutoff Frequencies

In AU, the mode's excitability at its cutoff frequency is extremely

important. The cutoff frequency corresponds to the frequency at which the

mode's wavenumber is zero and the frequency below which a mode is evanescent.

(Table 2.1 lists the theoretical values of the cutoff frequencies for an aluminum

plate.) Since the wavenumber is zero at these points, the phase velocity is infinite.

Consequently, AU will tend to generate modes at these frequencies, since
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Figure 2.1 Dispersion curves for a traction free plate, whose bulk wave speeds

arc V1 = 6.3 mm./us and Vt = 3.2 mm./us (aluminum). Only real roots are shown,

which accounts for the apparent ends of modes S1, A2, and $4.

Table 2.1 Cutoff Frequencies for a one mm thick traction free plate, who_ bulk wave

speeds are VI = 6.3 ram/us and Vt = 3.2 ram/us (aluminum).

i

Order Symmetric Modes Antisymmetric Modes
First (1) 3.15 1.6

Second (2) 3.2 4.8

Third (3) 6.4 6.3

Fourth (4) 9.45 8

Fifth (5) 9.6 11.2

Sixth (6) 12.8 12,6
ii
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normally incident waves tend to generate plate waves with very high phase

velocities. This is the limiting case of the "wedge" technique, which generally

allows the experimenter to vary the angle of incidence so that the ultrasonic

wavefront travels down the surface of the plate and preferentially excites a plate

wave with a phase velocity that matches the wavefront's delay.

As the mode approaches its cutoff frequency, the particle velocities will

become either entirely out-of-plane or entirely in-plane. (Auld 1990, p.84.,

Vitkorov 1969) As a result, the modes that have entirely out-of-plane particle

velocities at their cutoff frequency become infinitely excitable, and the modes

with only in-plane particle velocities become completely unexcitable.

The excitabilites cannot be directly derived from the time-harmonic

solutions presented in this thesis. However, the material response term contains

similar information, combining information about both the excitabilities and the

wavestructure. This term is shown in figure 2.2, a plot of the out-of-plane

displacement component of the material response as function of the frequency-

thickness product and the phase velocity (=t.o/G, assuming the point of observation

is far away from the source). The response of the second order symmetric mode

($2) and the third and fifth order anti-symmetric modes (A3 and A5) are

increasing with the phase velocity, indicating that these modes are very excitable

at high velocities. On the other hand, the responses of the third order symmetric

($3) and the fourth order anti-symmetric mode (A4) are quickly decreasing. As a

result, the high phase velocities associated with a normally incident wave packet

will not tend to excite these modes. In this manner, figure 2.2 can be used to

indicate which modes can be efficiently generated using AU techniques.

When multiplied by the wavenumber, the material response term tells

what particle displacements would be excited by a point source (that tends to

excite all frequencies and phase velocities equally), as shown in figure 2.3. The
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Figure 2.2 Out-of-plane displacement component of the material response as a function of the frequency-thickness

product and the phase velocity. The responses of modes $2, A3, and A6 are increasing with the phase

velocity, indicating that these modes are very excitable at high velocities. On the other hand,

the material responses of modes $3 and A4 quickly decrease and the modes will therefore not be

effectively excited by normal tractions.
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Figure 2.3 Out-of-plane displacement response to a point source, shown as a function of the frequency-thickness

product and the phase velocity. Numerically, the response represents the material response term multiplied

by the wavenumber. It decays to zero at infinite phase velocity, since a point source cannot generate an

infinite amount of energy.
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response to a point source decays for all modes as the phase velocity approaches

infinity, indicating that the system contains a finite amount of energy. As for the

material response term, it can be observed that modes $2, A3, $4, and A5 will be

more strongly excited than modes A1, S 1, A2, and $3 at high phase velocities.

Cross-Sectional Profile

The wavestructure relates to both how excitable a mode is and how

sensitive it is to certain defects. The cross sectional profile of the out-of-plane

normal stress, the out-of-plane displacement and the in-plane displacement, which

are characteristics of the wavestructure, are shown in figure 2.4. The solid lines

represent the symmetric modes and the dashed lines represent the anti-symmetric

modes. There are large out-of-plane displacements on the surface of the plate

when the frequency-thickness product (fd) is both 3.4 mm-MHz (where $2

dominates) and 6.4 mm-MHz (where A3 dominates). As a result, these modes

can be efficiently generated by a normal traction. On the other hand, the 5.0 mm-

MHz frequency-thickness products plots (figures 2.4b,e,h) are dominated by the

A2 mode which is transverse (all in-plane displacements) at its cutoff frequency

(at fd--4.8 mm-MHz). Although the in-plane displacements are not very large, the

out-of-plane displacements are almost zero making the mode very difficult to

excite via normal traction.

The differences in wavestructure can be exploited for defect detection and

characterization. For example, the second order symmetric mode ($2) at fd=3.4

mm-MHz has a large in-plane displacement near the plate's surface allowing it to

find critical surface cracks effectively, in addition to having a large out-of-plane

displacement component. The A3 mode at 6.4 mm-MHz, on the other hand, has a

maximum in-plane displacement approximately one third of the way through the

plate and has a very small in-plane displacement on the surface. Since the A3

18



+d/2

-d/2

+d/2

-d/2
Normal Stress

+d/2

I
/

I
J

f

(

Normal Stress

(a) Fd = 3.4 mm-MHz b) Fd = 5.0 mm-MHz (c) Fd = 6.4 mm-MHz

+d/2

\
7

J

f
/

/
/

-d/2
Normal Stress

+d/2

-d/2 -d/2
Out-of-Plane Dlsp.

\ +d/2

f

f

/

/
I

-d/2

\

/
J

f

/
/

Out-of-Plane Disp. Out-of-Plane Disp.

(d) Fd = 3.4 mm-MH_z (e) Fd = 5.0 mm-MHz (f) Fd = 6.4 mm-MHz

+d/2 +d/2

/
f

J
J

t

{J

-d/2
In-Plane Displacement

-d/2
In-Plane Displacement

+d/2 T_
I,

'll
-d/2

in-Plane Displacement

(g) Fd = 3.4 mm-MHz (la) Fd = 5.0 mm-MHz (i) Fd = 6.4 mm-MHz
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mode's maximum in-plane displacement occurs at a location where the $2 mode

has no in-plane displacement, the difference in the propagation characteristics of

the two modes can be exploited to help characterize defects such as cracks or

pores.

Effect of the Varying the Pressure Distribution

When angle beam transducers are used, the experimenter can effectively

control which area of the dispersion curves are generated by controlling the

transducer's center frequency, the frequency bandwidth, and the angle of

incidence. However, in Acousto-Ultrasonics, all of the experiments are conducted

at normal incidence, which limits the control that the experimenter has over which

modes are generated. To regain some of this control, other characteristics of the

transducer, such as its pressure distribution, must be adjusted.

The pressure distribution is affected by many factors, including the

electrical contacts, the pulse shape, the backing material, the type of piezo-

electric, and the physical shape of the housing and the transducer construction.

Although many of these parameters cannot be changed after the transducer is

manufactured, they should be considered when the transducer is designed.

Different distributions favor different phase velocities, which may be chosen so

that the transducer can excite a particular mode more effectively. Special

transducers can also be created that target a specific mode by using discontinuous

faces or sequencing. Laser generated ultrasound will allow these special

distributions to be easily changed and adapted depending on the desired

applications.

Most theoretical studies model a piston-like source since it is the simplest

one to describe (being constant below the transducer and zero everywhere else).

However, the discontinuities at the edge of the transducer are unrealistic and they
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unnecessarilycomplicatethemathematicalresults. High-frequencycomponents

appearthat arenot presentin continuallydistributedsourcessuchastheparabolic

distribution. Comparingthesimulatedandexperimentalresultsindicatesthat the

parabolicdistributiondoesmodel therealisticsituationmoreclosely.

The Hankeltransformtechniquecanbeusedto modelanyaxisymmetric

time-harmonicpressuredistribution,althoughnumericalintegrationmay be

neededto computetheresultfor acomplicateddistribution. For example,a more

realisticpressuredistributionmay bea "mixed"parabolic-pistonsource,which

behaveslike apistonsourcenearthecenterof thetransducer,but declinestowards

theedgeasa parabolicsourcewould. This distributioncouldbe representedby

thefollowing equation:

{ O(r_b r>a

2

Press= 1- a>r>b
\r-a]
1 r<b

where a is the radius of the transducer and b is the transition point (for example

2/3 of a).

Pulse Shape Influences

One of the easiest ways to control the frequency spectrum of the source is

modifying the shape of the wave packet (including its frequency, duration, and

modulation). In both the experimental set-up and the simulation, "tone burst"

techniques were used, in which 20 cycle packets of a certain frequency are square

or sine-modulated. The experimental set-up that was used for all of the

experiments is shown in figure 2.5. This set-up allows the center frequency of the

transducer to be controlled, although the transducer will retain some of its

frequency characteristics and generate frequencies near its natural frequency more

strongly than other frequencies.
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Thenumberof cyclesin thepulsegreatlyaffectsthefrequencybandwidth,

which in turn affectstheability to exciteamode. Figure 2.6showsthe

experimentalwaveformfor signalsof 10and80cycles. Figure2.7showsthe

frequencyspectrumsof thesesignals.The frequencypeaksaremuchnarrowerfor

the80cyclepulse,sincetheextracyclesreducethefrequencybandwidthof the

source.This causesmodesto only beexcitedwhenthecenterfrequencyis very

closeto themode'scutoff frequencies.The 10cyclepulse,on theotherhand,

exciteseachmodeoverabroaderfrequencyrange. It is alsoableto excitemore

modes(for exampleA1 at fd=l.6 mm-MHz), sinceits frequencybandwidthis

larger. Figure2.8showsthesimulatedmaximumRF amplitudeasafunction of

centerfd for signalswith threedifferentnumberof pulses,2, 10,and30. From

this figure,it is clearlyevidentthat frequencypeaksassociatedwith thecutoff

frequenciesarebroadenedwhenlesscyclesareincludedin awavepacket. As a

result,if manycyclesareused,thetestprocedurecanbemuchmoreselective.

However,thiswill reducetherangeof possiblewavestructures.

Themodulationenvelopof thewavepacketdoesnot appearto havea

largeeffecton theamplitudeof thereceivedwavepacket,asfigure 2.9of the

simulatedmaximumRF amplitudeshows.However,thefrequencyresponseand

theRF waveformdochangeconsiderably,ascanbeseenin figures2.10and2.11.

Thesuddenincreaseattheedgeof thesquaremodulatedsignalscauseshigher

orderharmonicsto begeneratedthatresult in large"sidelobes"in thefrequency

response.Theinterferencecausedby thedifferent frequencycomponents

attributedto thesesidelobescomplicatesthereceivedsignalbecausemoremodes

(with differentgroupvelocities)aregenerated.As aresult,it is moredifficult to

extractusefuldefectanalysisinformation.
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Figure 2.6 The experimental waveform obtained from (a) 10 cycle and (b) 80 cycle sine-modulated pulse

using the AU technique. A half inch transducer was driven at 4.8 MHz on a 40 mil (1.016 mm)

aluminum plate.
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Figure 2.7 The experimental frequency response of (a) 10 cycle and (b) 80 cycle sine-modulated pulse,

showing that the 80 cycle pulse has a much more narrow frequency bandwidth.
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Chapter 3

The Effect of the Transducer's Size

Traditionally, the transducer's size is dictated primarily by the physical constraints

of the testing location, the amount of power that needs to be put into the sample, and the

center frequency of the transducer (since higher frequency ceramic transducers need to be

thinner.) However, the effect that the size of the transducer has on what modes can be

generated and on the phase velocities of the generated modes has frequently been

neglected.

In AU, since the angle of incidence cannot be changed (as it can in the wedge

technique) to select a certain phase velocity, the size of the transducer becomes the

principle means that the experimenter has to control the phase velocity at which the wave

is generated. Transducers placed normal to a plate's surface tend to generate plate waves

with very high phase velocities. As the size of the transducer is increased, this effect

becomes stronger and the preferred phase velocity also increases. So, by changing the

size of the transducer, the phase velocity can be controlled, affecting which modes are

generated.

Physical Understanding

In AU, modes tend to be generated at infinite phase velocities because the entire

wavefront hits the material sample simultaneously. On the other hand, when an angle

beam transducer is used the wavefront progresses down the material surface. By

selecting an angle, a specific phase velocity can be selected by matching phases (Snel's

law). However, because AU always uses normally incident transducers, it loses this

ability to select any phase velocity, tending to generate waves at very high phase

velocities.



Thephasevelocitiesat which modescanbegeneratedis dictatedby interference

effects. Following Huygens'Principle,wavesaregeneratedsimultaneouslyfrom all

pointson thetransducer'sface. Thesewavestheninterferewith eachother. Wavesthat

haveshortwavelengths(lessthanthetransducerradius)correspondingto low phase

velocities (thefrequencyis assumedto beconstant= thefrequencyof theforcing

function) experiencemore interferencebecausetheyhavealargerphasedifferenceacross

the faceof thetransducer.This interferencecausestheresponseto fluctuaterapidly as

the phasevelocity changes.Longerwavelengths(higherphasevelocities)meanthat

fewer wavelengthsarecreatedacrossthefaceof thetransducerandthefluctuationsoccur

lessrapidly, becauseagreaterchangein wavelengthis neededto transitionfrom

completelydestructiveto completelyconstructiveinterference.Whenhalf of the

wavelengthis approximatelylargerthanthetransducerdiametertheresponseno longer

fluctuatesrapidly,becauseonly onepartof onewavelengthis affected. All higherphase

velocitiesareveryexcitable. As thephasevelocity andwavelengthcontinueto increase,

the phasedifferenceacrossthefaceof thetransducercontinuesto decrease.Thesource's

contribution reachesits maximumvaluewhenthephasevelocity is infinite andeach

portion of thetransducercreatesa wavethathasthesamephase.

An infinitely largetransducerwill only generatewavesat infinite phasevelocities,

while apoint sourcewill tendto generateeveryphasevelocity. Finite sourcesfall in

betweentheselimits. In general,asthetransducerdiameteris increased,thephase

velocitiesat which awaveis generatedalsoincreasebecausetherewill bealargerphase

differenceacrossthefaceof a largertransducer,increasingthewavelengthandphase

velocity abovewhichtheresponsenolonger fluctuatesandreachesa valuenearits

maximumvalue. Thepracticalconsequenceof thiseffect is that atransducerwhose

diameteris smallerthanthewavepacket'swavelengthwill beableto reachdowninto the

lower phasevelocitieseffectively,but a largertransducerwill only effectivelyexcitehigh

phasevelocities. At low phasevelocities,a largetransducer'sresponsefluctuatesrapidly.
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Mathematical Modeling

The relationship between the transducer size and the phase velocity is clearly

demonstrated by the solution to the time-harmonic problem. The source-dependent term

of the solution is defined as the Hankel transform of the pressure distribution. In the

piston case, for example, the source term becomes - aPJ: (_a)l_, where a is the

transducer's radius, _ is the wavenumber, and Jl is the first order Bessel function. As can

be seen from this term, larger diameter transducers cause the source term to fluctuate

more rapidly than smaller diameter sources do. This has two consequences. At low

phase velocities (corresponding to high wavenumbers) the source term changes more

rapidly for larger sources. The consequence of this effect will be discussed below. Also,

the wavenumber at which the source term reaches its first null is larger for a smaller

source. This first null corresponds to the phase velocity beyond which the source term no

longer fluctuates. So, a small source will reach down to lower phase velocities than a

larger source (or reach up to higher wavenumbers since the wavenumber is related to the

phase velocity, as 5= 09/Vph, far enough away from the source). Figures 3.1 and 3.2 show

these effects. Figure 3.1 a shows the value of the source term (essentially a Bessel

function) at one MHz vs. the wavenumber for the piston source. Figure 3. lb shows the

same information plotted against the phase velocity, demonstrating how smaller sources

can excite lower phase velocities than large sources. A parabolic pressure distribution

displays the same type of behavior, as seen in figure 3.2.

Since the wavenumber term helps account for energy considerations associated

with finite-size sources, it is helpful to lump the source and wavenumber terms together

and study the response. Although the source term by itself reaches a maximum value

when the phase velocity is infinite (figure 3.1), the value of the source-wavenumber term

fluctuates rapidly at lower phase velocities, reaches a maximum value at a f'mite phase

velocity, and then decays asymptotically to zero at infinite phase velocity (figure 3.3).
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This creates a profile that closely resembles the amplitude profile that describes the

near/far field of a transducer impinging on a bulk material (which is another expression of

Huygens' Principle). Because of the minima that occur before the "far field" phase

velocity, modes with low phase velocities at that particular frequency may or may not be

generated, just as a defect very close to a transducer may or may not be seen.

The decay in the total response as the phase velocity becomes infinite can be

interpreted physically. As the phase velocity and wavelength increase, the transducer

drives a smaller portion of the wave. This causes the wave's energy to be distributed

over a wider range of frequencies. However, because of the plate's boundaries, only

certain frequencies that correspond to Lamb waves are "allowed" at a particular phase

velocity. As a result, once, less energy is transferred into a mode as the phase velocity

increases. The radiation condition also requires that the response decays to zero as the

phase velocity goes to infinity. Otherwise, a finite source would need to create an inffmite

amount of the energy. In addition to these two energy conditions, wave propagation

principles indicate that infinite phase velocities cannot be generated by a finite source. A

mode's group velocity is zero at every point on the dispersion curve where the phase

velocity is infinite (corresponding to the cutoff frequencies). As a result, the waves with

infinite phase velocities do not propagate.

An expression for the location of the "far field" phase velocity can be found by

solving for the first maximum of the wavenumber-source term and then converting the

result to phase velocity. The first maximum of Jt (z) occurs at z = 1.84118 (Abramowitz

and Stegun, 1972), therefore, assuming that the material response is constant, the phase

velocity at which a mode tends to be most strongly excited by a piston source is,

2nfa (3.1)
vph = 1.84118

and for the parabolic source, the maximum will occur near

2nfa (3.2)
vPh = 2.300
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wheref is thefrequencyanda is the transducer's radius. These values are only

approximate because they do not take into account that each mode's material response is

also function of wavenumber. This will cause the "far field" phase velocity to be

different for each mode. For example, the A3 mode should be excited at higher phase

velocities than the $2 mode, because it's material response (out-of-plane surface

displacement) increases more dramatically with increasing phase velocity.

The "far field" phase velocity value can be used to determine what phase

velocities are sure to be excited. For example, equation (3.2) indicates that a 4 mm

diameter source can generate the fundamental symmetric mode (SO) consistently at 1.0

MHz, but at 3.0 MHz, the source would need to be smaller than 1 mm in diameter.

Although this small of a transducer is not very practical with conventional techniques,

laser generated ultrasound may be able to generate a wave efficiently at a low enough

diameter. However, if such a small transducer is used, not only the fundamental mode,

but also all of the higher order modes that exist at that frequency will be generated, since

the value of the source term decays very slowly as the phase velocity is increased. As a

result, the signal will be complicated by the many modes propagating in the plate.

To fully understand which modes will be generated, the total response of the

system must be considered. Neglecting the constants and the radial wave term, this total

response is equal to the source term multiplied by the wavenumber and the material

response. Figure 3.4 shows the source term in fd-phase velocity space and figure 3.5

shows the total response obtained by multiplying figure 3.4 and figure 2.3, the response

to a point source. The 0.77 mm source, shown in figure 3.5a, has very few nulls and can

generate almost any mode. As the size of the transducer is increased, however, more

nulls appear and certain parts of the dispersion curve become impossible to generate. If

high enough phase velocities were examined, it would be seen that each of the modes

(except those that become complex) reach a maximum response at some phase velocity

and then they decay. This maximum can be seen in the response of the 6.35 mm source.
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The value of the A1 mode peaks around 12 mm/t.ts and then begins to decay as the phase

velocity continues to increase. The $2 mode, which is much larger than the surrounding

peaks, is just about to reach its maximum. The phase velocities shown are not high

enough to detect the maximum values for the 12.7 mm or the 25.4 mm sources. These

maxima should occur near 70 and 150 mm/l.ts respectively. The erratic behavior of the

modes in this low phase velocity region explains the "hit or miss" nature of generating

modes at low phase velocities by normal surface tractions.

Pressure Distribution

Figure 3.3 allows the comparison of the values of the source-wavenumber term

for piston and parabolic pressure distributions. By comparing figure 3.3a and b, it can be

seen that the parabolic profile reaches its maximum amplitude at a lower phase velocity

that the piston does, as predicted by equations (3.1) and (3.2). Sample RF signals and for

the two types of sources (piston and parabolic) at 1 MHz are shown in Figure 3.6. The

rapid fluctuation of the source term at low phase velocities accounts for the large change

in the signals, as described below.

Comments on Fundamental Modes

Figure 3.7 shows how the simulated frequency response and RF signal of a

system changes for three typical transducer diameters ( f = 1 MHz, d = 1 mm, 10 cycle

sine modulated parabolic source). The width of the main envelop of the received

frequency spectrum is primarily dependent on the frequency spectrum of the source and

the material response. However, since a range of frequencies are excited, interference

causes minima to occur in the received frequency spectrum. The exact interference

pattern is hard to predict for the fundamental modes since the source profile varies so

rapidly at low phase velocities. However, in general, the number of minima will increase

as the size of the transducer is increased because there will be a larger phase difference
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Figure 3.6 The (a) simulated frequency response and (b) simulated RF signal for a 12.7 mm source

with two different pressure distributions. The results represent a 10 cycle pulse propagating

in a 1 mm AI plate at fd=l.0 mm-MHz. The large change in the signals shows how erratically

the system behaves and what a large effect the pressure distribution can have at low

phase velocities.
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across the face of the transducer, resulting in more points of destructive interference. In

figure 3.7, the size of the transducer is of the same order of the magnitude as the

thickness of the plate (the diameter/wavelength ratios are approximately 1.2, 2.3, and 3.8

for the quarter, half and one inch transducers respectively), causing relatively strong

minima. As a result, small changes in the material or the transducer properties have a

large effect on the received signal. The solutions only become stable for modes whose

phase velocities are larger than the "far field" phase velocity given by equations (3.1) and

(3.2).

The simulated RF signal (figure 3.7b) shows that the A0 mode (with the lowest

phase velocity and a slower group velocity) dominates the signal from the 6.35 mm

source, while SO dominates the 12.7 mm source and the two fundamental modes are

excited equally by the 25.4 mm source. However, figure 3.8 demonstrates how erratic

this behavior is. These two figures show the frequency response and the simulated RF

waveform for a 1.1 MHz source. The 0.1 MHz-mm change drastically modified the

interference pattern and the system's response.

In figures 3.7a and 3.8a (simulated FFTs of a 1 MHz and a 1.1 MHz transducer),

it can be observed that only the fundamental modes (SO and A0) are generated, since the

next highest mode, the second anti-symmetric mode (A1), does not propagate below fd =

1.6 mm-MHz. Because the phase velocities of the zero modes are always finite the small

transducer is able to generate these modes more efficiently than the larger transducers.

As a result, the absolute magnitudes of the RF signals from the different size sources in

Figures 3.7b and 3.8b are approximately equal although the largest transducer's contact

area is 16 times greater than the smallest transducer. This has significant practical

effects. Using a larger transducer will not increase the power transmitted to the

fundamental modes, as long as the pressure density (proportional to driving voltage)

remains the same.
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Figure 3.7 The (a) simulated frequency response and (b) simulated RF signal for three different size

parabolic sources on a 1 mm AI plate at fd=1.0. The amplitude of the RF signal from the

6.35 mm source is greater than the signal from the larger sources because the smaller transducer

is able to excite lower phase velocities and therefore "reach down" to the fundamental modes.

There is also a change in the ratio of the modes as the size of transducer is changed.
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Higher Order Modes

Although the fundamental modes can be generated using Acousto-Ultrasonics,

unless a small transducer or very low frequency is used, the received signals are generally

weak. To avoid complicated signal processing routines and to take advantage of different

wavestructures, higher frequencies can be used to generate higher order modes at their

cutoff frequencies. Modes that have predominately longitudinal displacements at these

points (for example, $2, A3, $6) are extremely excitable.

Figures 3.9 demonstrates how strongly the cutoff frequency peaks influence the

excitability of a wave for three different size transducers. Each point on the graphs

represents the maximum amplitude of a simulated time-domain waveform for a source

that is centered on that fd and has a fixed fd bandwidth. Plots are shown for a quarter,

half, and one inch transducer. As expected, the larger transducers have much larger

peaks at the cutoff frequencies. At other frequencies, almost no wave propagates.

However, the smaller sources, which generate waves at lower phase velocities are not as

influenced by the high excitabilities at modes' cutoff frequencies and show a more even

distribution over changing frequency ranges.

Experimental Results

Figure 3.10 compares simulated and experimental results. Figure 3.10a is similar

to figure 3.9a, the simulated maximum RF amplitude vs center fd for three different size

transducers, except that the simulated frequency response was multiplied by the

magnitude spectrum of the transducer used in the experiments, to account for its

frequency characteristics. Figure 3.10b, which contains the experimental data, was

created by directly measuring the maximum time-domain voltage from a LECROY 9310

digital oscilloscope. Krautkramer-Branson Gamma (narrow band) transducers were

driven by a modulated 20 cycle pulse and oil coupled to a four by six foot 87 mil
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44



(a) 0.00014

0.00012

0.0001

< 0.00008

=E 0.00006

E 0.00004
e=
=E

0.00002

0

0

', S2

6.35 mm

12.7 mm

......... 25.4 mm

i

,tI "\\ F'_ A3

r\ _\:t :, \ / _ S4A/_S5

I I I , , I I I _ _-1

1 2 3 4 5 6 7 8 9 10 11 12

Frequency-Thlckness (mm-MHz)

(b) 1.20E+02

tiE
n- 1.00E+02

,..,.
C_

_ _._E8.00E+01
m

_ 6.00E+01
.=

_ 4.00E+01

m

m 2.00E+01=E

0.00E+00

6.35 mm

12.7 mm

......... 25.4 mm

1 2 3 4 5 6 7 8 9 10 11 12

Frequency-Thickness (mm-MHz)

Figure 3.10 Comparison of (a) simulated maximum RF and (b) experimental maximum RF amplitude.

(10 cycle sources on an 87 rail plate, two inch radial separation) The simulated max RF was
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45



aluminum plate. Two one inch transducers were used, with 5.0 MHz and 2.25 MHz

center frequencies. The quarter and half inch transducers both had 5.0 MHz center

frequencies. Although he relative amplitudes of the three different size sources can not

be directly compared because the pressure amplitude and the transmission through the

couplant could vary, the qualitative trends of each of the curves should be accurate.

There is good qualitative correlation between the simulated and experimental

results. At low fd's, the maximum RF amplitude fluctuates rapidly, as the simulation

predicted. At higher fd's, the one inch transducer shows a much larger and steeper $2

peak (fd = 3.2) than the smaller transducers, after which it decays. The quarter inch

transducer, on the other hand, peaks before the $2 mode even comes in (primarily due to

the excitability of the fundamental modes). Its A3 (fd = 6.3) and $5 (fd = 9.6) peaks are

as large as the $2 peak, as opposed to the larger transducers, which generate the $2 mode

much more strongly than any others, as the simulation predicted. These results show that

the maximum RF amplitude plot can be used as a quick way of identifying frequencies

that efficiently generate a mode and it also serves an easy way to compare the effects of

certain parameters.

Application to Adhesive Bonding

The size of the transducer can have a large influence on many practical

applications, for example in adhesive bond testing on aircraft. The bonding of

reinforcement plates on the back of an aircraft's skin can be tested by sending a guided

wave across the area where the reinforcement should be. If the reinforcement is well-

bonded, some of the energy "leaks" into it, if it is poorly bonded the guided wave travels

undisturbed. In essence, a well-bonded plate increases the thickness of the plate and

changes the dispersion curves in that region. A small transducer will be less able to

detect this difference than a large transducer because it is excitable at many frequencies

and may be able to adapt to the new boundary conditions. The opposite may be true for
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theevaluationof lap-shearjoints. Since in that setup energy must be transferred from one

sheet to another of similar thickness, a large transducer's (small bandwidth) signal may be

unduly affected by the thin layer of adhesive. More work should be done to explore these

effects. The reader may wish to refer to Rose (1994) or Rokhlin (1991) for more

information on adhesive bonding evaluation.

Frequency Shift

The size of the transducer also affects the frequency at which a mode tends to be

generated, as previous researchers have noted (Ditri 1992, Rose 1993). Since the phase

velocity of all real outward propagating waves decreases as the frequency increases,

exciting waves at a higher phase velocity (by a larger diameter probe) causes the

frequency to decrease. Figures 3.11 and 3.12 show this effect. The frequency responses

in figure 3.11 were taken at the frequencies and at which the time domain amplitude

peaks (1.80, 1.60, and 1.50 MHz respectively). The responses in figure 3.12 were all

taken at 1.5 MHz center frequency (fd = 3.35 mm-MHz). Figure 3.13 shows

representative time domain signals for this region of interest.

It is interesting to note that in figures 3.11 and 3.12 the S1 peak (the short one at

1.4 MHz) stays at 1.4 MHz for all three size transducers, while the $2 peak (the big one)

shifts to the left as the diameter of the transducer increases. The dispersion curves help

explain this phenomenon. The S 1 dispersion curve ends at a relatively low phase velocity

(8.0), since at that point the wavenumber becomes complex, causing the wave to quickly

attenuate. (See Mindlin (1960) p. 445 [219]) for more information on the development of

the dispersion curves.) As a result, S1 will be excited at nearly the same frequency,

regardless of the transducer's preferred phase velocity. Although the frequency stays

constant, the size of the peak changes depending on the location and amplitude of the

local maxima of the source term. The $2 dispersion curve, on the other hand, rises

gradually as the frequency decreases. Consequently, the $2 peak shifts as it responds to
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the change of phase velocity. This shift effect was also noted in anisotropic materials by

Rose et al. (1993)

Concluding Thoughts on Power Transmission and Wave Generation

Exciting modes at their cut-off frequencies creates certain limitations. It has

already been shown that certain modes exhibit only shear displacements at their cut-off

frequencies (Pilarski et al (1993), Auld (1991), Vikortov(1969)). As a result, these

modes will not be excited by a normal incidence transducer which only transmits

longitudinal waves through the couplant.

Even for modes that are excitable at infinite phase velocities, normal incidence

limits the amount of power transmitted, since normally incident waves excite plate waves

at high phase velocities. As a result, unless the frequency is near a mode's cut-off

frequency, very little energy is transferred to the medium. In addition, there is no

directivity associated with a normal incidence transducer. The waves spread

symmetrically in all directions, so only a small proportion is seen at the receiver, as

opposed to angle beam probes which can direct their energy.

Often, larger transducers will be used to compensate for the loss of power

transmission. (A bigger transducer will be able to push more.) However, if the frequency

is not correctly chosen, a larger transducer will increase the phase velocity, only "see" the

upper portion of the dispersion curves, and actually reduce the proportion of energy

transmitted., (as was seen in figures 3.7 and 3.8).

If modes need to be generated at lower phase velocities, a smaller transducer must

be used. In order to transfer the same amount of power to the structure as a larger

transducer would, various tricks need to be explored. For example, a focusing element

and a delay line may be added onto the transducer which could concentrate all of the

energy within a smaller diameter. Laser generated ultrasound or special pressure

distributions may also be used to concentrate more energy into lower phase velocities.
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sine-modulated pulse).
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Chapter 4

The Effects of Changing the Plate's Thickness

Lamb waves can only propagate at certain frequencies and phase velocities

(Lamb 1917). These modes depend on the resonances formed across the

thickness of the plate. By assuming a harmonic time dependence and solving the

Rayleigh-Lamb equations, the phase velocity, group velocity, and excitabilities

can be determined as functions of the frequency-thickness (fd) product.

However, the frequency-thickness normalization is not valid for finite-size

sources. When a f'mite-size source is taken into account, the Lamb waves become

functions of the frequency and the thickness separately instead of their product.

As a result, different thickness plates display different excitabilities, interference

patterns, and wave shapes, than would be expected if only the fd product was

considered.

In a broad sense, the system's change in response is similar to the changes

that occur when the size of the transducer is changed. The ratio between the size

of the transducer and the thickness of the plate (which is related to the wave's

wavelength) strongly influences what interference effects occur and what phase

velocity the excited wave has. Increasing the thickness of the plate or shrinking

the diameter of the source reduces this ratio and tends to excite waves at lower

phase velocities. For waves to only be functions of the frequency-thickness

product, the frequency-transducer radius product and the frequency-transducer

separation product must also be held constant.

Parallels can be drawn to the effect of changing the transducer size that

has already been explained by the simple physical principle that more of the

surface is driven directly by a larger transducer, increasing interference effects.



Wavesaregeneratedsimultaneouslyfrom all pointson thetransducerface. The

wavesgeneratedby onepartof thetransducerinterferewith thosegenerated

elsewhere(by Huygens'Principle). The shorterwavelengthsthatareassociated

with a thinnerplatewill havea muchlargerphasedifferenceacrossthetransducer

facethan thelongerwavelengthswill have. This strongerinterferencepattern

reducesthefrequencybandwidthof eachpeak. In addition,it tendsto only excite

wavesat high phasevelocities,sincelow phasevelocities(shortwavelengths)will

interferewith eachother.The onlywavesthat arenot interferedwith arethose

which havean infinitely long wavelength,correspondingto an infinite phase

velocity. However,aswasshownfor thesizedependence,energyconsiderations

andwavepropagationrulescausethevalueof theexcitability to reacha

maximumat a certainphasevelocity andthendecayasymptoticallyto zeroat an

infinite phasevelocity.

Physical Solution

The solution to the time-harmonic wave propagation problem clearly

shows how thicker plates are able to excite waves at lower phase velocities. In

this solution, the material response is only a function of the frequency-thickness

product. However, when a finite source, instead of an infinite or point source, is

considered the solution develops a dependence on the frequency and the thickness

separately.

Material Response

As long as the point of observation is far away from the source and the

wavenumber term is neglected, the material response is only a function of the fd

product as can be seen from the following definition:
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Material Response = F =

where (taking the symmetric out-of-plane example)

F_ = k,t((k _ - _)sin(k,,d / 2)sin(kaz) + 2_ 2 sin(k, fl / 2) sin(k,_z))

(4.1)

(4.2)

and

/-8cos(k,tdl2)sin(k,,d/2)+ (k_ -Cz) }/A:= _(k:-_)l{d/_ksin,kad ' 2)sin(kJ / 2) + d/_k, COs(k,fl/2)cos(kJ,2)

_[Skdk,, -4_2(K_ + Kn)_sin(kad 12)sin(kJ / 2) (4.3)

/ t

+

\ k. ks /

+ 2g'(k.dcos(k,,d / 2)cos(k d / 2)+ kjsin(kad 1 2)sin(k,J / 2))

where A_ represents the derivative with respect to the wavenumber of the

Rayleigh-Lamb dispersion equation.

By using the following relations, (where ct is the bulk shear wave speed

and Cl is the bulk longitudinal wave speed)

= 09 ka = - _ k_, = _ _2 = to - (4.4)
Cph

it can be shown Hat the resulting expression is only a function of the fd product

(provided z is taken on the top surface (z = d/2).) After canceling fd products,

both the gamma functions and the delta prime functions are of the order of toa and

the frequency dependence cancels. The value of the material response is shown as

a function of the frequency-thickness and phase velocity in figure 2.2.

In the above derivation, for the frequency dependence to cancel, two

assumptions are made. The observation point is assumed to be far from the

source. This assumption allows the complicated cylindrical wavefront

relationship of the wavenumber and phase velocity to be replaced by the relatively

simple planar wavefront expression, _ = CO/Vph. It was also assumed that the
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wavenumberterm,which waspulledout of thematerialresponse,couldbe

neglected.If this termis includedwith thematerialresponse,thecombined

expressionthenbecomesfrequency(andthickness)dependent.However,because

of the assumptionof planarwavefronts( _ = eo/vph ), the frequency dependence is

not complicated. As long as the frequency-thickness product remains constant,

the phase velocity is constant, so the wavenumber becomes linearly proportional

to the frequency. The material response-wavenumber term would then also be

linearly proportional to the frequency.

Source Influence

When the source and wavenumber terms are added, the displacement

equation becomes a function of frequency and thickness separately instead of their

product. Mathematically, the source term is given by the Hankel transform of the

pressure distribution. For the piston source this becomes:

where

i rfCr)J o (_r)dr = -Pa (4.5a)
J1 (_a)

o

0 P r < a
f(r) = (4.5b)

r>a

a is the transducer radius and Jn is the Bessel function of the first kind of order n.

The wavenumber term in the Bessel function causes nulls in the simulated

frequency response of the source, as seen in figure 4.1. Because the wavenumber

is smaller for thicker plates, there are fewer nulls in the 5 mm plate than the 0.2

mm plate. Because there are fewer nulls caused by interference effects across the

transducer's face, the shape of the received signal is more similar to the original

shape in the thicker plate, as can be seen in figure 4.2.
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Radial Effects and Group Velocity

The radial displacement term (Ho(_r) or Hi (_r), for out-of-plane and in-

plane displacements respectively) is also frequency-dependent. This term comes

from the Hankel transform technique and represents the solution of the wave

equation in circular cylindrical coordinates. For the same frequency-thickness

product, a thinner plate propagates waves with higher wavenumbers since the

wavenumber is equal to the circular frequency divided by the phase velocity and

the frequency will increase while the phase velocity remains the same. The higher

wavenumbers cause the Hankel function to fluctuate more rapidly in space as the

transducers are spread apart, corresponding to a higher frequency.

Although the frequency and wavelength of the guided waves change as the

thickness does, the group velocities of each mode generated stays approximately

the same, as long as the frequency-thickness product (fd) is kept the same. Figure

4.3 shows simulated waveforms that correspond to two, four, and six inch

transducer separations for two different thickness plates at fd = 1.0 mm-MHz.

The group velocities calculated from these simulated signals are 5.4 mrn/_ts for

the SO mode and 3.4 mrn/l.ts for the A0 mode. These results agree with the known

group velocities for planar wavefronts, which are 5.25 mm/tas for SO and 3.21

mm/las for A0. The difference in group velocities can be attributed to mistakes in

modeling the material and the assumption that the expression for planar

wavefronts could be used.

Experiments confirm the simulated data. Figure 4.4 shows four RF

waveforms that were obtained experimentally on two different thickness plates, at

the same fd product. The group velocities are nearly the same except that the

signal arrives a little earlier for the thicker plate as can be seen in the four inch

separation plot (b,d). Figure 4.5 compares the frequency responses of the

simulated data and the experimental data. Figures 4.5a and c are experimental
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Figure 4.3 Simulated waveforms for two thicknesses of plates, (a) 1.0 mm and (b) 0.33 ram,

and three different radial separation distances, 2, 4, and 6 inches. A 12.7 mm, 10 cycle,

sine-moduated, parabolic source was simulated at Fd = 1.0 mm-MHz
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Figure 4.4 Four experimental RF waveforms taken at the same Fd = 3.5 mm-MHz on two thickness plates

(40 and 87 rail) and at two separation distances (2 and 4 inches).
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Figure 4.5 Comparison of experimental (a,c) and simulated (b,d) frequency responses for two

thickness plates, 87 (a_b) and 40 (c,d) rail, excited at fd=3.5 mm-MHz, by a half inch transducer.
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results and figures 4.5b and d are the simulated responses, taking into account the

characteristics of the transducer. The general behavior is the same. However,

subtle differences near the cutoff frequencies and non-exact models for the

pressure distribution and material properties, cause differences, as can also be

seen in the simulated time signals in figure 4.6. The experimental data has

sharper peaks in the frequency domain (corresponding to generation of waves

with higher phase velocities than the simulation could handle) that cause the

experimental pulses to be more drawn out than the simulated signals.

Maximum RF Amplitude Profiles

Figure 4.7 represents the maximum RF amplitude that would be generated

by a simulated 12.7 mm sine-modulated parabolic source as its center frequency

was varied from fd = 1 to fd = 12. The results for a 1, 3, and 5 mm plate are

shown. Combining the effects of the source and the material, they demonstrate

how the amplitude of the out-of-plane displacement changes with the thickness of

the plate.

Several traits of the graphs should be noted. The amplitude of the main

peak ($2 fd -- 3.2) varies approximately as 1/_ as indicated by the source term for

a Parabolic source. Also, the bandwidths of the peaks increase as the thickness

increases, as was discussed earlier. A more important physical consideration is

the dramatic change in the ratio of the main $2 peak to the other modes which are

also excited. In the three and five mm plates (figures 4.7b,c) there is a dramatic

increase in the amplitudes of the SO, A0, S 1, A 1, $4, and A3 modes in

comparison to the $2 peak. This indicates that the ratio of the transducer's size to

the plate thickness should be kept small, if one these latter modes is desired.
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Figure 4.6 Four simulated RF waveforms created at the same fd=3.5 for two thickness plates (40 and 87 mil)

and for two separation distances (2 and 4 inches). The signals were created with a half inch

piston source, driven by a 20 cycle sine-modulated signal.
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Experimental verification

A half inch, 5.0 MHz center frequency Krautkramer-Branson Gamma

transducer was used to generate tone bursts on two different thickness plates

(1.016 mm and 2.2352 mm). The results for when the fd product was kept

constant at 3.5 mm-MHz (Figure 4.4) were already discussed. Each plate was

also swept through a reasonable frequency range and the maximum experimental

RF amplitudes were noted. Figure 4.8 shows the comparisons. The general

trends are the same. For both the experimental and simulated case, the $2 peak is

smaller, narrower, and at a lower frequency in the 40 mil plate.

Figure 4.9 shows a few representative waveforms in the $2 frequency

cutoff region. In the 40 mil plate, the waveform, and the underlying

wavestructure, is essentially constant throughout the entire region that the plate is

very excitable. However, the 87 mil plate is excitable over a much wider range of

fd, which allows the experimenter to choose a convenient waveform or

wavestructure for the application. Figure 4.10 shows the frequency spectrum

corresponding to some of the signals in figure 4.9. The bandwidth of the 87 mil

peaks is much larger than the bandwidth of the 40 mil peaks. There is also a

much larger change in the location and shape of the frequency spectrum (because

a wave will propagate in a wider range of fd's in the thicker plate).

In the Large Thickness Limit

As the thickness increases in relation to the wavelength, the plate begins to

act as a semi-inf'mite half space. The quantities ktt and kts become large

imaginary numbers, which bind the wave the near the surface. In this limit, the

Lamb waves superimpose and behave as a single Rayleigh surface wave, which

has a constant phase velocity and is consequently non-dispersive. As a result, the

maximum RF amplitude becomes constant for all fd and the modes become

inseparable. Auld (1990, p.88) gives more information on the Rayleigh wave

solution.
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Chapter 5

Conclusions and Future Developments

Conclusions

This report explores the effects that a finite axisymmetric source has on

wave propagation in Acousto-Ultrasonics. Although it also addresses the effects

of the transducer pressure distribution and pulse shape, this work concentrates in

two main areas:

• the effect of changing the transducer's diameter, and

• the effect of changing the plate's thickness.

The mathematics of the time harmonic wave propagation solution, the physical

principles, and the practical considerations for AU wave generation are explained

for both of these areas.

The transducer's diameter affects the phase velocity at which the wave is

produced. In general, a larger source excites higher phase velocities. As a result,

a larger diameter source narrows and shifts the frequency range over which a

large RF amplitude is received especially for the Lamb wave modes that contain

only normal displacements at their cutoff frequencies. Because it increases the

phase velocity at which a mode is generated, a larger source excites the

fundamental modes much less efficiently (and more erratically) than a smaller

source. Recognizing this effect allows the size of the transducer to be adapted to

optimize the desired application.

A finite source causes the wave solutions to become a function of

frequency and thickness independently, instead of being a function of the

frequency-thickness product (as they are if it is assumed that a plane wave is

incident on the plate). Increasing the plate thickness affects the response in a

similar way to reducing the size of transducer, indicating that the ratio of the



transducerdiameterto theplatethicknesscanprovideaneasyway intuitively

determiningwhichphasevelocitiesarepreferred. Thisconclusionalsoimplies

thatStressWaveFactorscannotbeaccuratelyappliedto different thickness

specimenswithout retrainingthesystemfirst.

Dispersioncurvesareveryuseful for indicatingwhatwavestructuresare

possiblein aplate;however,theydonot tell thewholestory. Thesourcealsohas

alargeinfluenceandthis influencemustbecombinedwith thematerialresponse

beforethewavepropagationcharacteristicsandeachmode'samplitudecanbe

understood.BecauseAcousto-Ultrasonicsemploysthelimiting caseof normal

incidence,thedispersioncurvesdonot provideenoughinformation. The

wavestructureof eachof themodes,thesizeandpressuredistributionof the

transducer,andtheplatethicknesstakeona moreimportantrole thantheydo in

anglebeamtechniques.

Areas Calling for Future Exploration

There are many questions that still need to be answered before Acousto-

Ultrasonics can be quantitatively understood. The tools created as a part of this

thesis can be used to begin this process.

Stress Wave Factor (SWF) Definitions

Many of the current definitions of the SWF have been created by trial and

error, measuring such ambiguous quantifies as the number of ringdown counts,

the first moment of the frequency spectrum, or simply the ratio of the amplitude

of the received signal to the input signal. Such empirical formulas may be

significantly affected by parameters other than defects, although they may work

well in a single class problem. By providing insight about AU wave propagation

and modeling realistic situations, the research begun here should be able to help
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createanimproveddefinition of theSWFwhich is morepreciseandhasastrong

physicalfoundationor at leastit will beableto evaluatethenumerousSWFsthat

areused. This standardizationandphysicalbasiswill allow AU to beexpandedto

new areas.

Some early ideas for this new definition include a weighted criteria which

compares received mode amplitude ratios to those that were sent. Since modes

convert as they interact with defect, this should allow for a detailed defect

detection and characterization. This research on f'mite source generation will need

to be combined with work on scattering, which is already being explored by

researchers such as Alleyne (1992) and Rokhlin (1991), before this problem can

be fully addressed.

Anisotropic Material

AU is most commonly used to evaluate composite materials, which can

usually be modeled as anisotropic, homogeneous materials. Although the general

wave propagation principles that are described in this thesis still apply in

anisotropic materials, analytical solutions for anisotropic materials will be needed

to study more complex effects, for example skew effects. However, the Hankel

transform technique will no longer be able to be used, since it requires

axisymmetric properties.

Dispersion Curve Shifts caused by a Finite Source

Wave excitation theory assumes that the Lamb wave dispersion curves are

generated at single points on the dispersion curve. However, because all

transducers have a finite size, modes are generated over a portion of their

dispersion curve. This integration over a portion of the dispersion curve shifts the

location of the effective, or experimental, dispersion curve and affects the wave
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structure. Thesechangesmayturn out to be insignificant, but they definitely need

to be studied.

Circular Comb Type Transducer

The Acousto-Ultrasonic technique cannot effectively generate modes at

precise phase velocities. Phased array transducers or 'comb' type transducers

(which have projections corresponding to the locations of the crests of a wave that

is desired) combined with particular pressure distributions may make this

possible. A particular mode could be chosen and generated very efficiently,

gaining some of the advantages of the angle beam technique while keeping the

simplicity of AU.

Laser Generated Ultrasound

Using lasers to generate ultrasonic waves opens up many new possibilities.

Lenses can focus the energy into a very small radius or they can reshape the beam

to create unusual pressure distributions. In addition, laser ultrasound can create

transverse tractions in the plate, as opposed to contact transducers which tend to

only create normal tractions. This will open the possibilities for even more modes

to be generated.

Better Transducer Model

In this work, a transducer was modeled by an equivalent normal traction.

This assumption is not valid for every ultrasonic transducer. A better model,

which can adapt to different kinds of transducers, needs to be developed. Without

doubt, there needs to be a better model for Laser generated ultrasound before it

can be modeled by this technique.
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Sunmaary

BeforeAcousto-Ultrasonicscanreachits full potentialasa NDE tool,

there must be a better understanding of the wave propagation principles that are

involved. To address this need, this report studies the effect that the size of the

transducer can have on the resulting ultrasonic signal. Many of the Stress Wave

Factors that are currently used can be greatly affected by this size effect. This

variation causes the results to be inconsisent if the size of the transducer or the

thickness of the plate is changed.
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Appendix A

The Time Harmonic Solution



In this appendix, the problem of normal incidence pressure loading of a

linearly elastic, homogeneous, isotropic layer is studied. The loading is assumed

to be time-harmonic and axisymmetric, applied over a circular region of radius a.

The solution of this problem was taken from Ditri (1993a), but parts of it may be

found elsewhere (for example Pursey (1957), Fulton and Sneddon (1958),

Viktorov (1967), and Scott and Miklowitz (1969)).

Problem Formation

The goal of this work is to model the Acousto-Ultrasonic technique

applied to in isotropic plates, so that the effects of the size and the pressure

distribution of the modeled source can be studied.

Deriving the relevant equations of motion is the first step involved in

solving this problem. Euler's equation of motion can be found by applying

Newton' s second law and the principle of conservation of mass to an arbitrary

volume within the elastic solid. This leads to the following relation between the

particle displacement field, u(r,t), and the stress dyadic, g,

32u - V.
g. -t _ (A.1)

when mass density of the layer, p, is assumed to be constant, the material is

assumed to be linearly elastic, and body forces (i.e. gravity) are neglected. The

generalized Hooke's law then relates the stress dyadic, a, to the elastic constants

of the material. The theory of elasticity shows that for a homogenous, isotropic

material, the 81 possible components of the elastic stiffness tensor reduce to two



materialconstants,t and/x,which arecalledtheLain6constants.In this case,

Hooke's law simplifies to

t_ - 117. u + _(Vu + uV) (A.2)

Combining equations (A. I) and (A.2) leads to Navier's displacement equation of

motion,

, o_2u

/.tV x(V x u) + (i + 2j_)V(V •u) = p-_- (A.3)

which isactuallya coupled setof threehomogeneous partialdifferential

equations,one foreach of the displacement fieldcomponents.

Equations (A.I)- (A.3)describethe behavior of the wave inthe bulk

material.To model wave propagationin a plateofthickness,d, rectangularand

polarcylindricalcoordinatesare definedas shown infigureA. i with the rnid-

plane of the layercorresponding toz = 0.

Figure A. 1 Cartesian and polar cylindrical coordinates defined for an isotropic, homogeneous
layer of thickness d.

This work only considers the case where the upper surface of a layer is

subjected to a time-harmonic, axially symmetric traction loading in the circular

region r -- _ + y: < a, as seen in figure A.2. Because of the axial symmetry of
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theproblem,theangulartransversetraction, cr:0,is identicallyzero. The

boundaryconditionson theothertwo stresscomponentsat thesurfacecanbe

written:

cr=(r,z=d/2,t)={f(; e-_'

cr=(r,z = -d / 2,t) - 0

tr,z(r,z=d/2,t)={g(le-i=

tr, z(r,z = -d l 2,t) - O

0<r<a

r>a

0<r<a

r>a

(A.4)

wheref(r) is the axial distribution of normal tractions applied to the surface of the

layer and g(r) is the distribution of the transverse tractions in the radial direction.

Z

Y r

=.-

x

zl

r
-r-3 I _ _ )
_L_C x (

&

Figure ,4,.2 Upper surface of the layer is subjected to a time-harmonic, axially symmetric traction

loading in the circular region r --- _ + y2 < a.

76



Problem Solution

Uncoupling the Displacement Equations

The displacement field, u(r,t), can be uncoupled into irrotational and

equivoluminal parts by using the Helmhottz decomposition of the elastic

displacement field. Thus, the displacement is written

u = V_ + V x q', V. _ = 0 (A.5)

where _ and • are the scalar and vector Helmholtz potentials. Substituting

equation (A.5) into Navier's equation of motion (A.3), and separately taking the

divergence and curl of the resulting equation results in the following two

equations:

and

+ 29- =0 (A.6a)

By requiring that these two equations be applicable for an arbitrary, volume within

the plate, and using the vector identity,

V x V x W = V2W + V(V. W) (A.7)

these equations can be rewritten in the more convenient form

1 o_2_ (2+2#) ½V2O=c_ oqt: ' C/.= P

and

2 0t 2 ' CT =
C7-

where CL and crrepresent the longitudinal and shear wave speeds in the bulk

material.

Due to the axial symmetry, the displacement field will be independent of

angle, O, and the angular component of the displacement field, uo, will vanish.

These requirements can be satisfied by setting the 'r' and'O' components of the
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vectorpotential,W,equalto zero. Thus,thevectorpotentialcanbereducedto a

scalarfield, _ = gtz, the component in the 'z' direction,.

Assuming a harmonic time dependence of e "imt. equations (A.8) can be

rewritten (in polar cylindrical coordinates),

a2¢, 13_ a:¢ o_:
3r-----7-,r--_r + --_-z2+ --_-L_ =0 (A.9a)

and

1 a_ _ 32_ 092
°_2_ + _+ _--_-v/= 0
cgrz r Or r2 t- az 2 cr

(A.9b)

Applying the Hankel Transform

Because of the axisymmetric nature of the problem, the Hankel transform

provides a convenient way of obtaining a closed-form solution. The Hankel

transform and the inverse Hankel transform of order n are defined (for an arbitrary

function b(r)) as:

B" -= H, {b(r)} = ;orb(r)J.(_r)dr

b(r)= 5k(:' {B"(_)} = So _B"(_)J.(_r)d_

where J,,0 represents the Bessel function of the fh'st kind of order n. Through

integration by parts, it can be shown that,

and

Ho{d2_rf)+lr _rrdg(r)

Ht{_ +Idg(r)rdr

(A. 10a)

(A. 10b)

= -{ZG° (r) (A. 1 1a)

(A. 11 b)
g!r)} = __2Gl(r)

as long as b(r) and its derivatives with respect to r vanish at r=0 and in the limit as

?- ---> _.
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Taking advantageof the properties of the equations (A. 1 I), the zero order

Hankel transform applied to equation (A.9a) and the first order Hankel transform

is applied to equation (A.9b), resulting in ordinary differential equations,

and

d2_ 0

dz----T--+(k:a-_)tb ° =0 , kL = (O/c a (A.12a)

d2tI JI

dz---r+ =0 , kL = (O/c L (A.12b)

where _ is the wavenumber (and the transform parameter) and kL and kr are the

longitudinal and transverse wavenumbers respectively. The general solution to

this set of equations (A. 12) is

• °(_,z) = A(_)cos(k,,z) + B(_)sin(k,,z) (A. 13a)
and

udl (_,z) = C( _)cos( k=z) + D( _)sin( k=z) (A. 13b)

where k,2 - ((tic L)2 - 42 and k_ - ((tic r )2 _ 42 and A(_), B(_), C(_), and D(_) are

arbitrary functions of the wavenumber, _.

Satisfying the Boundary Conditions

The ampLitudes in the general equations (A. 13) can be found by satisfying

the boundary conditions (traction free except within a circular region of radius a).

The boundary conditions are imposed on the stress components at the

surface of the plate and not on the displacement potentials, so the solutions must

a/so be expressed in terms of the potentials. Using equations (A.2), (A.5), and

(A.7a), the stress components that appear in the boundary conditions in equations

(A.2) can be expressed in terms of the potentials,

z ,92¢ 2/.t t9 d_
_,,(r,z)=-_kLdp+ 2#_zZ +--_'_rCr-_z )
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Applying thezeroorderHankeltransformto theexpressionfor a= andthefirst

order transformto theexpressionfor cr,-zresults in,

d2_ 0 dud '

x°(_,z)--H°{_,,}=-_k_°+2u--_r-+2u_-Z-

E_(4,z)-H'{o'_}=-# 24 +42_P'+ dz 2 j

Applying the same transforms to the boundary conditions (equations (A.4)),

yields the following equations:

Y°=(_,d/2) = Ho{f(r)} - F°(4)

Z° (4,-d12) _ 0
and

(A. 15a)

(A. 15b)

(A.16a)

(A.16b)

Y_(4,d/2) = M', {g(r)} - G'(4) (A. 16c)

Y_(4,-d/2) - 0 (A.16d)

Substituting the general forms of the transformed potentials, equations (A. 13),

into the formulas for the trmasformed traction components, equations (A. 15), and

imposing the transformed boundary conditions, equations (A.16), on the resulting

expressions, results in four linear homogeneous equations in the four unknown

amplitudes, A(_), B(_), C(_), and D(_), which can be written in matrix form as,

where [A] is given by:

-u(k}- ¢2)cos(k_diE)
-#(k,]- ¢2)cos(k,,dl2)

2/.t_ka sin(ka d/2)

-2/.t_k, sin(k,, d12)

-I.t( k_ - { ")sin( k,, d/2 )

#(k_ -{2)sin(k,,d/2)

-21.t_k_ cos( k,, d/2 )

-2_t_k acos(k,, d/2)

t.- •

-2#qk,, sm(k_ d/2)

2#_k= sin(k_ d/2)

#(k_-¢:)cos(k,,d/2)

U(k_-{')cos(k_dl2)

(A. 17a)

2#¢k_ cos(k,, d/2)

2#4k =cos(k= d/2)

u(k_ -¢:)sin(k_,dt2)

-#(k_ - _:)sin(k,,d/7
(A.17b)

80



The determinant of [A] can be expressed in the form,

1[A]I = 4#'A_A s

where (using the relation Ak2 + 2#k,_ = #(k 2 -_2)),

A,-(k 2 -_2):cos(k, td/E)sin(k,,d/2)+4_:k, kusin(k,d/2)cos(k,_ d/2) (A.19)

represents the dispersion function for straight crested symmetric Lamb waves in a

• free layer, and

At = (k 2 - 4:)Zsin(kad/2)cos(k,, d/2) + 4_2k,_k,_ cos(kad/2)sin(k _ d/2) (A.20)

represents the dispersion function for straight crested anti-symmetric Lamb waves

in a free layer. The dispersion curves can be generated by setting equations

(A. 19) and (A.20) equal to zero and solving for the real roots. Even though the

plate contains circularly crested waves, straight crested Lamb wave dispersion

equations are expected because the dispersion equations represent resonant effects

across the thickness of the plate, in the 'z' coordinate, which is the same for both

Cartesian or cylindrical coordinates systems.

The system of four equations (A. 17) can be solved using Cramer's rule,

leading to the following values for the unknown amplitudes:

A(_) = A,,(_)G' (4) - ._,(_)F°(_)
2#2G( )

B( _) = A'3( _)G' ( _) - A_3( _)F° ( _)
2#2ao( )

C(¢) = &2(g)F°(_)- A,__.(¢)G'(¢)
2#2ao(¢)

D(_) = &'(_)F°(_) - A,,(_)G'(_)
2#2G( )

where Aid are the elements of the matrix, X

(A.18)

(A.21 a)

(A.21b)

(A.2 lc)

(A.21d)
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Applying the Inverse Hankel Transform

Substituting the calculated amplitudes for A, B, C, and D (equations

(A.21)) into the transformed potentials, equations (A. 15), and applying the inverse

Hankel transforms of the appropriate orders, gives formal solutions for the two

Helmholtz potentials,

._,(_)G'(4) - .,%,(4)F°(4) cost k Z_J ¢_:ra_:d_:
¢(r,z):jo_" _ x ,, s 0.,- ,'_ "_

(A.22a)

(_)G'(_) - .7_3(4)F°(_) sinCk zaJ ¢):r_/:dZ

2/.t A,, (4)
and

gt(r,z) -_ c°stK,sz)Jt(¢r)¢d¢Jo z/_ _,o(¢)

f" ._, (4) F° (4) - at, ( _)G' ( _)+ sin( k,,z)J 1( _r)_d_J0 2#ZAs(_)

(A.22b)

The potentials in equations (A.22) can be broken into "symmetric" and

(A.24a)

(A.24b)

"anti-symmetric" potentials,

(_(r,z) = ¢S (r,z) + ¢_(r,z) ' (A.23a)

v/(r,z) = gr_(r,z) + qt_(r,z) (A.23b)

The superscripts refer to whether the displacements associated with the potentials

are symmetric (the integrals with As(_) in their denominator) or anti-symmetric

(the integrals with A (4) in their denominator) with respect to the mid-plane of

the layer.

The Helmholtz decomposition equation (A.5) can be used to express the

particle displacements in terms of the potentials. These displacements can be

broken into their in-plane, 'r', and out-of-plane, 'z', components,

0_ ,.o ,91/.°
sa/_ -,u_" _ ,Z) =

Or 9z

u:'"(r,z) = _+ _'° _ Oq/'"
cgz r Or
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After differentiatingundertheintegralsin equations(A.22) and

performing thenecessaryalgebra,thefollowing equationsarefoundfor the

particledisplacementfields:

u;(r,z) = ffooF'_(k,,,k_,_)G'(_)+ r'_(k_,k,A)F°(¢) J_(_r)_d_
212A, (k_,k,,_)

u_z(r,z) = [" I"_r(ktx'ktt_)G'(_) + I"_n(gts'ka_)F°(4)

ao 2#A, (k,,,k,,{) Jo (._r) _d_

f- r;(k,,,k,,{)G' ({) + r_(g,.,, k,,{)F° ({)
Ua(F,Z) Jt (_r)_d_Jo 2UA,<k_,k,A)

u_"(r'z) = _ooF_,(k_,,k,_)G'(_) + 1-'._(k,,,k,t¢)F°(_) jo(_r)_d _
- 21.tA_(k_,ka_)

The F_ functions are defined in both the appendix of Ditri (1993a) and in

(A.25 a-d)

Appendix B of this thesis. The subscript alpha refers to whether the function

belongs to the 'r' or 'z' components, and the beta refers to the whether the function

relates the displacement to normal or transverse tractions.

Normal Pressure Loading

The Acousto-Ultrasonic technique generally uses normal incidence

longitudinal wave transducers, which tend to apply only normal tractions to the

plate surface because shear stresses cannot be transmitted across the oil film that

AU typicaUy uses as a couplant. As a result, although equation (A.25) is valid for

both normal and transverse traction loading, only the normal case will be

examined in detail.

One possible model of the pressure distribution is the "piston" example,

which represents a uniform normal pressure distribution across the face of the

transducer, thus

and

= __-P, r < a
f(r) (A.26a)

L0, r>a

g( r ) - 0 (A.26b)
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Taking thetransformsof theseloadingfunctionsresultsin

and

F° (_) = -Pa Jl( _a)
(A.27a)

G' (_) - 0 (A.27b)

Contour Integration

Through contour integration, residue calculus can be used to evaluate the

infinite integrals in equation (A.25), provided the integrand vanishes as _ --> 0 on

the large semicircle enclosing the upper half plane, the function has an

exponential component ei_ and the equation is defined for all real 5- As they are,

equations (A.25) do not satisfy these requirements. However, if the substitutions,

Jo(z) = l_[H0"'(z)- H(ot'(z)(ze")] (A.28a)

and

Jr(z) = 1//2[H_t'(z) + H_"(z)(ze'_)] (A.28a)

are made, each of the integrals can be rewritten in one of two forms (after making

the change of variable from -z to z where appropriate),

11 = _ Z,(¢)H<ol'(_r)d_ 12 = _. Zz(_)H;"(_r)d_ (A.29)

where H_ u represents the Hartkel function of the first kind of order n., ZI is and

odd function of 4, and Z2 is and even function of _..

With this substitution, coutour integration is now possible and the

integrands behave as eig'/_ 2 _r>>l. However, the poles associated with

propagating waves fall on the real axis, which leads to a standing wave solution

since the solution physically consists of both incoming and outgoing waves. A

small amount of material attenuation, which is set to zero after the integration, is

added by allowing the wavenumber to become complex, _ = a + i'r. Adding a

small imaginary component, x, to the wave number causes the location of the
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polesto beshiftedfrom therealaxis,sothatonly incomingor outgoingwavesare

includedin ahalf-planecontour.To ensureoutgoingwaves(for thee-i°_ttime

dependence),thepolesthatwereshiftedfrom thenegativerealaxisarechosen.

Exceptat _,..----0,all thesepolesaresimplepoleswhich simply occurat

therootsof theRayleigh-Lambfrequencyequation,_... As cutoff frequencies

areapproached,thewavenumbertendsto zeroandtheHankelfunctiontendsto

behavein thefollowing manner:

/-/_0t) -- i21og(_r) H_ ')
n: and (A.30a,b)

 ro0

indicating that the singularity as _ _ 0 may not be a simple pole. However,

further research is needed to determine the nature of the this singularity, so in this

solution it is assumed that all of the singularities are simple poles, even at the

mode;s c'ut-off frequency (corresponding to _ = 0). The summation of the

residues of these single poles leads to the two following equations for the

displacement fields:

• Ir Pa .o _,.° . r au;'"(r'z)=-'2-'_ 4' A;.,({,.,)

u,.,(r,z)=_i _._.ZpaJ,({,.,a){,, F;(_,.,_) H(o,)({,or ) r>a
: 2# ¢,, {,.o " A;.,(_,.,) '

(A.31a)

(A.3 lb)

where {s and {a are the roots of the dispersion equations (A.19) and (A.20),

respectively.

Arbitrary Pressure Distribution

Examining the solutions (A.31) reveals that the transform of the normal

loading function, F °, (equation (A.27)), remains unchanged in by the inverse

Hankel transform. Building on this simple concept, Ditri (1993a) shows the

solution may be generalized to any arbitrary pressure distribution, which vanishes
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identically for r greater than some value a* by replacing -PaJl(_a)/_ by the zero

order Hankel transform of the given pressure distribution, F°(_). For example, for

a parabolic normal pressure distribution defined by,

I-P[ 1 (r/a) 2]
-- , F<a

f(r)
/0, r > a

and

(A.33a)

g(r) - 0 (A.33b)

the zero order Hankel transform is given by,

=-2P ¢2
and

(A.34a)

(A.34b)
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Appendix B

Summary of Final Functions and Symbols
Used in the Time-Harmonic Solution



This appendix lists the equations that are needed to obtain a numerical solution

to the time-harmonic problem:

• _ FL(_,..)
u_.'(r,z)=tTZF°(¢,.,,a)_,.o H[')(_, _r) r>a

z_ ¢,, a;.,(_,.°) •

u_z'°(r,z)=-' Fo(_.,.a)_,.° r;(_,,.) H_l)(_,,r) r>a
A:.,(_,.,)

(A.31a)

(A.31b)

where.

r_(k.,k_,¢)=-k_[2__cos(kud/2)cos(kdz)+(k _ -_2)cos(kad/2)cos(k_,z)] 03.1)

r_(k,,k,_,_)= _[-2kak_,sin(kad/2)cos(k_,z)+(k_-_E)sin(k_,d/2)cos(k,,z)] (B.2)

F_(k,,,k_,_) = _[2k, tk,,cos(k,,d/E)sin(kaz)+(k_ -_:)cos(kad/E)sin(k_,z)] 03.3)

r'_(k,_,k,_,_)=k,_[E_: sin(k,,d/E)sin(kdz)+(k_-_:)sin(k_,d/2)sin(kaz)] 03.4)

F* (kd,k_,,_)= k,,[E_E sin(k,,d/E)sin(kaz)+(k_-_2)sin(k,zd/2)sin(k_,z)] 03.5)

F*,(kd,k,,,_)= _[-Ek,_k,,cos(kad/E)sin(k,_z)+(k_ -_2)cos(k_,d/E)sin(k, tz)] 03.6)

F* (ka,k_,,_) = _[-2kak,.sin(k_,d/E)cos(kdz)+(k_-_2)sin(kad/E)cos(k,,z)] (8.7)

r_(kd,k,,,_)=-k,_[2_:cos(k,,d/E)cos(k,,z)+(k_-_:)cos(k_,d/E)cos(k,_z)] (8.8)

A, - (k_ - _2 )2 cos(ka dl2)sin(k,_ d/2)+ 4_2kak,, sin(kad/2)cos(k,, d/2)

A, - (k_ - _2 )2 sin( ka d/2 )cos( k_, d/2 ) + 4¢ 2k,,k_ cos( k,t d/2 )sin (k,, d/2)

(A.19)

(A.20)

F°_.,( _) = -ea J_( #a) (A.27a)

_2p ./2 (_ a )
F°,,,,_(_) = _2 (A.34a)
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List of Symbols Used in Time-Harmonic Solution

Symbol Name Defining Relation

a

b( r ), Bn (b=)

CL

CT

d

Coefficient Matrix used to satisfy boundary
conditions

Amplitude for the symmetric part of the scalar

Helmholtz potential,

Transducer radius (finite circular region over
which tractions are applied)

Amplitude for the anti-symmetric part of the
scalar Helmholtz potential,

Arbitrary function in r, and its Hankel
transform of order n

Amplitude for the symmetric part of the vector

Helmholtz potential,

Longitudinal bulk wave speed

Shear bulk wave speed

Amplitude for the anti-symmetric part of the

vector Helmholtz potential,

Plate thickness

j(r),

g( r ), G° (_)

H_ l>

I

1 I, 12

J.

Radially axisymmetric normal traction
distribution and its zero order Hankel transform

Radially axisymmetric transverse traction
distribution and its fin'st order Hankel transform

Hankel function of the first kind of order n

Identity Dyadic

Integrals of odd and even functions in

Bessel function of order n

.q(. {g(r)}

. {G (_)1

Hankel transform of order n of the function g(r)

Inverse Hankel transform of order n of the

transformed function Gn(_)

89



Symbol Name Defining Relation

kL

P

Longitudinal wavenumber

Transverse wavenumber

Longitudinal wavenumber

Transverse wavenumber

Maximum pressure/per area applied by the
transducer on the plate

Position vector in space

Radial distance in the x-y plane away from the
center of the source

Time variable

_C L

%

r=_r+00+_z

u(r,O

$,a

Ur,z

A,, A:

Ao,A"

0

Zr Z2

Ii_s,a

Particle displacement field

Symmetric and anti-symmetric components of
the in-plane and out-of-plane displacements

Coordinate perpendicular to the plane of the
plate. (z = 0 corresponds to the mid-plane of
the plate)
Coefficent functions

Dispersion function for straight crested
symmetric Lamb waves in free layer

Dispersion function for straight crested anti-
symmetric Lamb waves in free layer

Angle to the point r from the x axis in the x-y
plane

Lam6's constants

Odd and even functions in

Wavenumber

Roots of the Rayleigh-Lamb Dispersion
Equations (A. 19) and (A20)

t_2U

Eqn. (A.3 I)

Eqn. (B.1)-(B.8)

Eqn. (A. 19)

Eqn. (A.20)
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Symbol Name Defining Relation

P

¢5

OrOz

r,°

O s_a

Mass density

Stress Dyadic

Shear stress component perpendicular to the

angular unit vector, /_, acting in the 'z'
direction

Shear stress component perpendicular to the
radial unit vector, acting in the 'z' direction and
its Hankel transform

Normal stress component in the 'z' direction
and its Hankel transform

Helmholtz scalar potential

Symmetric and anti-symmetric parts of the
Helmholtz scalar potential

Helmholtz vector potential

'z' component of the Helmholtz vector
potential

Symmetric and anti-symmetric parts of the ' z'
component of the Helmholtz vector potential

Circular frequency

Hooke's Law

o = _.IV- u + #(Vu + uV)

u = V¢ + V×'t', V.hu=0

u=V0+V×q', V._F=0
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